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ABSTRACT 

This study reports an analysis of the aerodynamic performance characteristics of 

an SA-2 type missile conducted using empirical codes.  The Missile and Space 

Intelligence Center (MSIC) supplied the missile geometry, which was incorporated into 

the MissileLab interface.  The study evolved based on the geometry changes MSIC 

recommended.  Results obtained using Missile DATCOM versions 7/07 and 8/08 are 

compared along with performance data provided by the project sponsor.  These data 

varied from experimental to empirical, as well as those generated using Simulink 

modeling.  Data comparisons were carried out for various Mach numbers and angles of 

attack.  For the most part, excellent agreement was obtained, especially when Missile 

DATCOM 8/08 was used, for the overall axial force coefficient value at the conditions 

explored validating the approach used.  Some comparisons also were generated for 

specific fin deflections conditions.  Additionally, a Computational Fluid Dynamics model 

was  included as part of the analysis, using ANSYS CFX, a compressible flow solver.  

With these results and the predictive tool, the in-house capability at the Naval 

Postgraduate School to generate such data for future missile designs has been 

successfully enhanced. 
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I. INTRODUCTION 

A. RESEARCH MOTIVATION 

During conceptual and preliminary missile design, having a timely and good 

estimate of the aerodynamic performance of the design is valuable.  By having this 

information early, the designer is able to estimate range, size the propulsion system, and 

determine how maneuverable the finished product can be.  This information can then be 

used to ensure that customer requirements are adhered to from early on in the project.  

From a reverse engineering standpoint, use of this type of information enables the 

determination of the capabilities of a missile design gained through intelligence efforts.  

Further, such an analysis provides the necessary design requirements for building a 

missile defense system to counter the threat.  The ability to produce such computer 

predictions without the actual expense of building either a scaled or an actual model is 

clearly invaluable. 

Aerodynamic prediction software packages provide a design tool to quickly 

generate aerodynamic performance estimates.  Distinct from Computational Fluid 

Dynamics (CFD), these software packages primarily use semi-empirical methods for this 

purpose, as opposed to discretizing the flow field and solving the Navier-Stokes 

equations at each point.  Some of these prediction packages are Missile DATCOM, 

Aerodynamic Prediction Code (AP-XX), PANEL3D, PRODAS V3, SET3D, and NEAR 

MISL3. 

The advantage of quick estimates for the performance of a flight vehicle is 

generally accepted even though the related uncertainty is about ±10%.  The United States 

Air Force’s Missile DATCOM software package, originally created by McDonnell 

Douglas Aircraft Company, was the tool employed for the current study.  It was used to 

determine the flight characteristics, specifically axial force, of the Russian-designed SA-2 

missile.  Experimental and extrapolated data for this configuration was available from the 

sponsor (MSIC, Missile and Space Intelligence Center).  Through careful comparison 

between the wind tunnel/extrapolated data and that produced by Missile DATCOM, 



validation of the Missile DATCOM product became possible, thus furthering its use as a 

predictive tool in conceptual and preliminary design efforts. 

B. TACTICAL MISSILE DRAG ESTIMATION 

1. General Concepts 

In aerodynamic design of an aircraft or missile, lift and drag are its two major and 

critical characteristics.  A framework is needed to discuss how these forces act on the 

body.  In Eqs. (1)–(3), a representation of the EOM from Krieger et al. (Mendenhall & 

Hemsch, 1992, p. 3) for a point-mass trajectory (in-plane, flat-Earth [curvature effects not 

included]), the dependence of the velocity and flight angle on the lift and drag 

coefficients is evident. 

 

  1
cos sinD

dV
T C qS g

dt m
     (1) 

 

 
 sin cosLT C qSd

dt mV V

 g 
   (2) 

 

 sin
dh

V
dt

  (3) 

 

For missile aerodynamics, it is customary to work in body axis coefficients, the axial 

force and normal force coefficients,  and .  Eqs. AC NC (4) and (5) show the relationship 

between the body coordinate representation of the forces and the traditional 

representations of lift and drag. 

 

 cos sinD A NC C C    (4) 

 
 cos sinL N AC C C    (5) 

 

From Eqs. (1)–(3), one can see that for every time step in a numerical solution to 

produce the velocity, flight path angle, and change in altitude, the quantities of lift and 
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drag must be known.  To this end, the aerodynamicist must produce a large and accurate 

database of aerodynamic coefficients for a range of flight conditions to accurately 

represent a missile’s behavior.  The aerodynamic prediction software packages provide 

this capability. 

Aerodynamic lift is important to maintain the missile in flight.  However, drag is 

of greater interest because it governs the ability of the missile to achieve the speeds 

necessary to intercept and neutralize a threat.  It is also more complex to calculate.  

Therefore, only drag prediction methods are discussed in this chapter. 

2. Component Build-up Method 

Conventional missiles consist of a circular cylindrical body with distinct wings 

and tails and are typically axisymmetric.  For these types of missiles, the primary method 

for computing drag is the component build-up method (Mendenhall & Hemsch, 1992).  

This approach consists of identifying the individual distinct features of the missile such 

as the wings, tails and inlets, and calculating the drag produced by each of these 

separately.  Figure 1 gives a graphic representation of the process to use the component 

build-up method.  The influence of the individual parts on other features is often 

relatively small and, thus, is neglected.  All of the individual drag components are 

summed to get the final total for the whole body, hence the name “component build-up.”  

For a non-conventional missile (i.e., a blended body design), the interference between 

individual parts is often not small and thus cannot be neglected.  In this case, the 

component build-up method does not produce very accurate results. 



 

Figure 1.   Component Build-up model (From Mendenhall & Hemsch, 1992, p. 7) 

a. Body Drag 

Body drag is separated into the drag that is produced in the boundary layer 

due to skin friction and the drag produced due to pressure distribution over the body 

(forebody pressure drag and base drag).  The assumption of the separation of drag 

components breaks down at subsonic speeds and high angles of attack.  Most tactical 

missiles spend a very short time in the subsonic region.  However, because of the 

inherent nature of missile flight operations (radical maneuvers, etc.) high angle of attack 

flight is of considerable interest. 

It is well known (Mendenhall & Hemsch, 1992) that more than 50% of the 

drag at zero angle of attack is due to the missile body.  In the subsonic region, the axial 

force is dominated by skin friction.  However, during the transition from the transonic 

region to the supersonic region, contribution of skin friction to the total axial force 

decreases and wave drag becomes dominant.  Krieger and Vukelich (Mendenhall & 

Hemsch, 1992) state that for most components of the missile body, the drag predictions 

are theoretically based.  However, transonic afterbodies and base drag do not lend 

themselves to this type of calculation.  Empirical methods with experimental foundations 

are often necessary. 

 4



Figure 2 shows the typical variation of drag at zero angle of attack while 

changing the freestream Mach number.  Clearly, in the subsonic region through the 

beginning of the transonic region, the drag coefficient is relatively constant.  As the Mach 

number increases through M = 1.0, a large increase in the drag coefficient is noticed.  

This is caused by the onset of shock waves and the continued strengthening of these 

shocks, which increases the wave drag significantly.  In later discussions of the 

experimental data for the SA-2, this transonic drag rise will be clearly seen. 

 

Figure 2.   Drag component variation with Mach number (From Mendenhall & Hemsch, 
1992, p. 8) 

Typical formulations for skin friction involve computing the axial force 

equivalent for a flat plate and then correcting it with a 3D shape factor.  An equivalent 

flat plate is one that has the same surface area, length, and Reynolds number as the body.  

Because of this formulation, laminar and turbulent boundary layer states must be taken 

into account.  The axial force for laminar boundary layers is calculated using the Blasius 

formulation.  The axial force resulting from turbulent boundary layers is typically 

calculated using the Van Driest method.  These are combined in regards to transition 

from laminar flow to turbulent flow via an empirical transition criterion (Mendenhall & 

Hemsch, 1992). 

Forebody pressure drag must be discussed in relation to the flight speed 

region in which the body is operating.  In the subsonic region, the pressure drag increases 

as the Reynolds number increases along the body due to the thickening of the boundary 

layer and eventual flow separation.  In the transonic region, the production of 

shockwaves on the body plays an integral role.  Slender body theory and the transonic 
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area rule are methods for calculating forebody drag in this region.  When the flight 

regime becomes fully supersonic, local shocks no longer appear on the body and bow and 

stern shocks attach to the body.  Because of the attached shocks at the nose, wave drag 

dominates.  Van Dyke’s hybrid theory (VDHT) and second-order shock expansion 

(SOSE) theory are typically used to calculate the forces. 

 

Figure 3.   Missile body flow changes with increasing Mach number (From Mendenhall 
& Hemsch, 1992, p. 11) 

Figure 3 gives a graphical representation of the changes that occur on the 

typical missile body as the freestream Mach number is increased.  One thing to note is 

that shock interactions with the body can cause the flow to separate, thus increasing the 

drag considerably, especially in the transonic region.  Base flow is also depicted here, 

which results in base drag, another component of pressure drag on the body.  A base 

pressure that is lower than the freestream induces the base drag.  The dead air in the base 

region is entrained in the external flow and carried downstream by mixing processes in 

the shear layers of the flow.  Krieger and Vukelich describe this process as “scavenging,” 

which reduces the pressure in the base region below the freestream, thus producing the 

base drag (Mendenhall & Hemsch, 1992). 

b. Inlet Drag and Fin Drag 

Inlet drag is typically comprised of the drag that is produced as part of a 

thrust-making effort (e.g., jet engine, ramjet)  It usually is separated into boundary layer 

 6



diverter drag, ram drag (for bleed air), additive wave drag, cowl wave drag, internal skin 

friction (i.e., head loss), inlet fairing drag, and inlet fairing base drag.  This list, although 

not complete, describes most physical phenomena that are occurring (Mendenhall & 

Hemsch, 1992). 

Fin drag is computed in a manner similar to the body drag.  It is broken 

into skin friction and pressure drag.  Skin friction calculation methods use the flat plate 

assumption, but the correlation is much closer when compared to body drag, so a 

correction may not be used depending on the required accuracies for the prediction.  The 

pressure drag is slightly more complicated to compute, but the same flow features 

manifest themselves on the fins in the transition from subsonic to supersonic conditions 

as occur on the body.  Figure 4 shows a graphical representation of this transition with 

three Mach number regimes. 

 

Figure 4.   Missile fin flow changes with increasing Mach number (From Mendenhall & 
Hemsch, 1992, p. 21) 

In the subsonic region, the pressure drag correlates with the thickness-to-

chord (t/c) ratio and skin friction.  As the fin enters the transonic region, shocklets begin 

to form, which are normal to the surface.  As the speed increases, a bow shock forms and 

attaches to the body, and the normal shocks no longer appear on the surface.  

Recompression shocks can be seen attached to the trailing edge at the wake.  In the 

transonic region, the transonic area rule and von Kármán similarity laws are used to 
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calculate the wave drag.  In the supersonic region, linear supersonic theory, Busemann 

Theory, and shock expansion theory are used to calculate the wave drag if the bow shock 

is attached. 

C. AERODYNAMIC PREDICTION SOFTWARE EMPLOYED 

Missile DATCOM-08 was used in the present study. It is an aerodynamic 

prediction software package that has been updated to incorporate the newer coding 

features of FORTRAN 90 and is maintained by the US Army Aviation and Missile 

Research, Development, and Engineering Center (AMRDEC) in conjunction with the Air 

Vehicles Directorate of the Air Force Research Laboratory (AFRL), Wright Patterson 

AFB, Ohio.  Missile DATCOM’s allure as a useful tool in the preliminary design of a 

wide variety of missiles stems from the speed at which it is able to produce useful and 

accurate predictions of a missile’s aerodynamic characteristics.  Both the current and 

previous versions of the software (7/07 and 8/08) are used as part of this study.  Tables 5–

7 of Appendix B summarize the methods for calculating axial force coefficient for the 

body and fins and their combined effect in the body-fin synthesis. 

D. SUPERSONIC AERODYNAMIC PREDICTION THEORIES 

The SA-2 is primarily a supersonic missile.  Thus, a discussion of the supersonic 

prediction theories is relevant.  Missile DATCOM uses the VDHT and SOSE theory to 

calculate missile flight parameters in the supersonic region.  Since the Mach number of 

interest here was 0.8 and higher, no discussion of the subsonic methods employed by 

Missile DATCOM will be made.  Hypersonic Newtonian Theory (HNT) is additionally 

used in the high supersonic to hypersonic regimes and where SOSE theory is possibly 

valid as well, but experimental data is not available for the missile configuration being 

studied, so a discussion of HNT is also not included. 

Van Dyke’s hybrid theory combines a second-order axial solution to the full 

potential equation with a first order cross flow solution.  Perturbations in the flow 

resulting from the presence of the body affect the axial direction more prominently than 

the cross flow direction. The second order solution is thus required in the axial direction 

to obtain the desired accuracy.  Since the presence of the body has a smaller effect in the 
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cross flow direction, only a first-order solution is required to obtain the desired accuracy.  

These two solutions are then combined linearly to form a solution to the full potential 

equation.  Subsequently, the perturbation velocities arise from this solution and enable 

the calculation of the pressure coefficient.  The pressure coefficient is then integrated 

over the body to get the axial and normal force coefficients.  A more detailed explanation 

including equations is presented in Appendix A for VDHT. 

Syvertson and Dennis (1957) developed SOSE theory in the late 1950s from the 

first-order shock expansion theory first proposed by Eggers et al. (1953).  In first-order 

theory, the flow parameters are computed at the leading edge of a two-dimensional 

surface with oblique shock wave relations or with a conical solution for a three-

dimensional body.  Prandtl-Meyer expansion calculations are then performed along the 

surface at different points to determine the pressure distribution over the body.  For 

curved bodies, at each point, conical tangent elements are used and the pressure is 

assumed to be constant over each individual element.  In order to get an accurate pressure 

distribution, a sufficient number of points must be used to approximate the curvature of 

the body.  Syvertson and Dennis proposed that a second-order solution be employed 

because, the first order calculations were not accurate for axial force computations.  The 

main difference between first and second order is that in second order, the pressure is not 

assumed to be constant over each conical tangent element but varies in a roughly 

exponential fashion (Moore, 2000). 

E. SURVEY OF RECENT IMPROVEMENTS TO MISSILE DATCOM 

Table 1 chronicles the recent version history of Missile DATCOM from 2002 to 

the present revision.  The most important capabilities and changes that are applicable to 

this research manifest in release 9 and release 11. 

 

 

 

 



Release Revision Capabilities Added or Changes Made 

8 09/02 High AOA, airfoil, friction drag corrections 

9 01/06 
Code clean-up and restructuring 
Cambered body capability 
Revised body drag (bluntness, high AOA) 

10 07/07 
Rolling moment for elliptical bodies 
Improvements in TE flap control increments 
Improvements for low aspect ratio fins 

11 08/08 
Ability to have nine fin sets with 8 fins each 
Revised body drag 
Moment contribution for protuberances 

Table 1.   Recent Version History for Missile DATCOM (After Auman, Doyle, Rosema, 
Underwood, & Blake, 2008) 

Horton and McDaniel (2005) performed a study in 2005 to determine the 

inaccuracies in the 09/02 version of Missile DATCOM with the intention of 

incorporating the proposed changes into the 01/06 version. Their study had particular 

emphasis on axial force calculations.  In the 09/02 version, subsonic axial force for 

is calculated by considering a part  of the force that is invariant with angle of 

attack and a part that changes with angle of attack as shown in Eq. 

0 3  0

(6).  This 

methodology was suggested by Allen and Perkins (1951). 

 ,0 ,A A AC C C    (6) 

The axial force for 30 is calculated in a similar manner as a function of both 

the axial force that is said to be invariant of angle of attack and a modification for angle 

of attack.  This is shown in Eq. 

90  

(7). 

 2
,0 cosA AC C   (7) 

This formulation was empirically derived by Jorgensen (1977).  However, the 

combination of these causes a sharp discontinuity at 30°, the cross-over point.  Horton 

and McDaniel suggest a return to a formulation that more closely follows the physics 

even to the point of including induced drag.  This follows the same idea as the body-to-

wind axis transformation that is given by Eqs. (4) and (5).  Eqs. (8)–(10) show the 

formulation in the body and wind axis terminology. 

 2
,0D AC C kC  L  (8) 
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 cos sinA D LC C C    (9) 

 ,0cos sin cosL N AC C C     (10) 

Combining these equations while assuming that k = 1, and only keeping normal force 

coefficient terms that are coupled with axial force coefficients, the formulation becomes 

 
 2 2 3 2

,0 ,0

3
,0

sin cos cos sin cos

2 cos sin

A A A

N A

C C C

C C

   

 

  




 (11) 

They show that this new formulation improves the accuracy of the simulation up to about 

an angle of attack of 45°.  They recommend that further work be done in this particular 

area to further improve the accuracy. 

Also as part of this study, they propose a change for the supersonic axial force 

calculation.  In the previous version, the supersonic axial force due to pressure alone is 

considered invariant of angle of attack in the VDHT method and the hypersonic 

Newtonian method as implemented.  This introduces additional errors when the geometry 

is at angle of attack.  They propose as part of the change to calculate the axial force at 

each angle of attack to eliminate this discrepancy.  A code structure change was 

suggested to eliminate these angle-of-attack errors.  The SOSE theory is also employed 

but is not affected by the angle-of-attack errors mentioned here. 

The most recent revision of Missile DATCOM (version 8/08) was released in 

2008.  This version included the ability to have nine fin sets with up to eight fins for each 

set, revised body axial force calculations, and the addition of moment contributions from 

protuberances.  Doyle et al. (2009) discuss the last two upgrades mentioned above.  First, 

the method to calculate the axial force coefficient for bodies with blunted, truncated, and 

low fineness ratio noses was updated.  Second, adding the ability to specify the angular 

orientation of protuberances enabled the additional of pitching and yawing moment 

contributions from these protuberances to the total body moments.  Changes in the axial 

force calculation methodology are of great interest.  However, since the choice was made 

not to model the protuberances on the SA-2 missile, the change to implement angular 

position of protuberances will not be discussed. 
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Updated 

Updated 

Figure 5.   Axial Force Methodology for Missile DATCOM 7/07 (After Doyle, Rosema, 
Underwood, & Auman, 2009, p. 3)  

Figure 5 shows the flowchart for body alone axial force calculations and is 

marked with the processes that have been updated to increase the accuracy of the 

aerodynamic predictions.  Three areas of related changes are apparent from Figure 5.  

They correspond to the purely subsonic, the transonic, and the supersonic regions.  The 

delineation between the subsonic and transonic regions is the critical Mach number where 

supersonic flow is just starting to develop in the flow field, but does not dominate.  The 

delineation between the transonic and supersonic regions is marked at Mach number 

equal to approximately 1.2.  This number almost certainly guarantees that the whole flow 

field is supersonic with exception of flow in the boundary layer and the flow in regions of 

separated flow.  Different techniques must be employed in these regions due to the 

different flow physics at play here. 

In the 7/07 version of Missile DATCOM, the form drag method is used to 

calculate the subsonic axial force (M < Mcrit).  It is a function of the body fineness ratio.  

If there is little or no separation, the method produces a good match to actual pressure 
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drag on the body.  However, if there is moderate to severe separation, as seen in nose 

geometries with low fineness approaching fully truncated, the method severely 

underpredicts the pressure drag.  Based on parametric studies for a range of fineness 

ratios conducted using CFD, Doyle et al. (2009) proposed a correction that fits a curve to 

a conical nose factor as a function of fineness ratio and implemented it.  This conical 

nose factor is used in Eq. (12) and (13) to adjust the axial force coefficient. 

  Apres Apres trun Aform AformC ConicalNoseFactor C C C     (12) 

 0.86Apres trun AfricC  C   (13) 

As the conical nose factor approaches zero (i.e., for fineness ratios greater than 1.5), the 

pressure drag component of the axial force approaches the axial force produced by the 

form drag method alone. 

For fully truncated noses, Missile DATCOM 7/07 interpolated between the 

pressure drag calculated via the form drag method and an empirically determined 

truncated drag based on the truncation ratio, defined as the truncated diameter divided by 

the nose base diameter.  In a similar manner to the corrections implemented for noses 

with low fineness ratios, a correction was proposed via a curve fit from parametric CFD 

studies to correct for the underprediction for this geometry. 

In the transonic region (Mcrit to M=1.2), use of Missile DATCOM 7/07 yielded 

large differences in the axial force values.  The method to determine the pressure 

component of axial force involves a curve fit of a cubic polynomial to the calculated 

values of the axial force coefficient.  In order to produce this cubic curve fit, one must 

know the endpoints and slopes at the endpoints.  The derivatives are approximated at 

these endpoints by a finite difference formulation.  The Mcrit endpoint is perturbed by 

0.01, and the M = 1.2 endpoint is perturbed by 0.1.  The left endpoint follows as a 

carryover from the subsonic discussion mentioned above.  The right endpoint axial force 

coefficients are both evaluated using the supersonic area rule, which is integrated over the 

body.  The supersonic area rule uses an area for calculations that is the projection of the 

slice made by the Mach cone angle at a particular point on the plane that is perpendicular 

to the body axis.  Therefore, the area is dependent on both Mach number and the actual 

cross sectional area.  For M > 1.2, VDHT or SOSET is used and a discontinuity develops 
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because of this switch.  The correction proposed for Missile DATCOM 8/08 is to use 

VDHT and SOSET to calculate the values at the right endpoint for the curve fit, 

eliminating the erroneously large axial force coefficients that result from using the 

supersonic area rule when high conical nose half angles are present in the geometry.  

These changes also eliminate the discontinuity that was present at the right endpoint 

because of the switch to VDHT or SOSET. 

In the purely supersonic region (M > 1.2), the 7/07 version of Missile DATCOM 

uses both VDHT and SOSE.  VDHT is used until its applicability ends and the program 

abruptly switches to SOSE.  The end of the applicability of VDHT occurs when the slope 

of the body at any point is greater than the Mach cone angle calculated from the 

freestream Mach number.  This switch causes a distinct discontinuity.  To resolve it, 

Doyle et al. (2009) propose a smoothing routine that interpolates between VDHT and 

SOSET for a particular nose fineness ratio as a function of Mach number.  Figure 6 gives 

an excellent graphical representation of this interpolation scheme. 

 

Figure 6.   Graphical Representation of Interpolation Scheme for Axial Force in the 
Supersonic region for Missile DATCOM 8/08 (From Doyle, Rosema, 

Underwood, & Auman, 2009, p. 10) 
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II. GEOMETRY MODELING AND RESEARCH APPROACH 

A. GEOMETRY MODELING 

1. Missilelab 

a. Interface with Missile DATCOM 

Missilelab, developed by Auman et al. at the United States Army Aviation 

and Missile Research, Development, and Engineering Center (AMRDEC), provides a 

convenient interface for many aerodynamic prediction software packages including 

Missile DATCOM (AMRDEC and AFRL Wright Patterson AFB).  Figure 7 shows a 

solid model representation of the SA-2 missile with three fin sets (canards, wings, and 

control surfaces from nose to tail, respectively).  A side view of the modeled SA-2 

missile is shown in Figure 8. 

 

Figure 7.   SA-2 solid rendition from Missilelab 

A series of input tabs within the geometry section of Missilelab is 

provided for each of the major components of a general missile design (nose, body, fins, 

afterbody, protuberances, etc.)  Parameters for these components are input, and a model 

of the geometry quickly emerges like those in Figures 7 and 8.  No knowledge of solid 

modeling using CAD software is necessary.  The most important advantage of this type 

of synthetic modeling method is the fact that the user does not need to know how to 

create the geometry input file for the particular aerodynamic prediction software. 
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b. Modeling Trade-offs 

Because the new geometry provided by MSIC did not include the airfoil 

profiles, the standard double circle arc airfoil was used for all of the airfoil sections of the 

fins.  The lengths of the fins are given and the thickness of the root and tip sections were 

assumed to be 2% of their respective chord dimension.  Table 2 gives the resulting 

dimensions for the fins.  Fin-Set 1 comprises the canards.  Fin-Sets 2 and 3 comprise the 

wings (2 is the upper and 3 is the lower).  Fin-Set 4 comprises the tail-fins (control 

surfaces). 

Fin 

Set 

Root 

Chord 

Root 

Thickness 

Tip 

Chord 

Tip 

Thickness 

Semi-

span 

LE 

sweep 

angle 

TE 

sweep 

angle 

1 0.193 0.0097 0.046 0.0023 0.105 43.89 -23.66 

2 1.7724 0.045 0.3842 0.0159 0.8215 55.96 -11.84 

3 1.7724 0.035 0.2692 0.0127 0.8707 56.64 -11.73 

4 0.447 0.0206 0.111 0.0064 0.5374 27.77 -5.83 

Table 2.   Modeled fin dimensions (dimensions in meters, angles in degrees; positive sweep 
is towards the rear of the tail of the missile) 

Figure 8 shows the side view of the modeled missile geometry.  The three 

grouping of fins (canards, wings, and tails) have four fin panels, one each at 45°, 135°, 

225°, and 315°.  This resembles a cross that is rotated 45°. 

 

Fin Set 2 (2) Fin Set 4 (4) 

Fin Set 1 (4) 

Fin Set 3 (2) 
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Figure 8.   Modeled missile geometry with major dimensions (meters) 



2. Solid Modeling for CFD Domain 

The solid model for use in the CFD calculations was created in Solidworks 

Education Edition SP5.0.  Figure 9 shows the missile body and fins.  The missile body 

consists of a series of extrusions (tangent ogive nose, cylindrical body, and conical boat-

tail).  The fins were created by drawing the airfoil shapes for the root and wing tip and 

producing a loft between them.  For each set, only one fin was created, while all of its 

twins were created by mirroring it in a pattern about the body axis.  Once the solid model 

for the missile was created, it was removed from the fluid domain by a process of 

subtraction.  This leaves only the surface of the missile and the surrounding fluid for 

discretization to be used by the CFD solver. 

 

Figure 9.   SA-2 missile solid model created in Solidworks 2008 

3. Computational Domain Characteristics and Computing Resources 

The computational domain is a parallelepiped with physical dimensions of 6.34 m 

(y) by 6.34 m (z) by 32 m (x).  The missile body is located 8 meters from the inlet of the 

domain, a distance of approximately 16 characteristic lengths (missile diameter).  The 

domain extends past the tail to the outlet approximately 32 characteristic lengths.  The 

sides extend approximately six characteristic lengths in both the y and z directions away 

from the missile body.  The computational grid has 345,484 nodes with 1,703,985 

elements.  Seven inflation layers were added on the surface of the body to better capture 

boundary layer physics.  The full domain was modeled in lieu of utilizing a smaller 
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domain with symmetry planes because the original intention for this part of the study was 

to simulate changes in the angle of attack for the missile.  However, this part of the 

analysis was ultimately not performed.  The fluid dynamic computations using the 

discretized domain were carried out on the NPS/MAE cluster computer, a Unix-based 

computing platform with 32 nodes and 4 processors per node.   

B. EXPERIMENTAL DATA 

Data for this study were provided by MSIC/Defense Intelligence Agency.  The 

data set consists of some wind tunnel data and modeled data generated using 

MATLAB/Simulink.  However, all the data are deemed to be from an experimental 

source.  The full details of the experimental procedures that were used to produce this 

data set are not available.  Equation (14) summarizes the inputs given for the total axial 

force coefficient.  Data for normal force and moment coefficients including their 

derivatives are also given as part of the data set. 

 ,0 , ,A A A f AC C C C C      (14) 

These data and a similar geometry were studied previously by Teo (2008) using 

Missile LAB code.  However, the missile geometry then was set up from a rudimentary 

drawing and not one that represented a high fidelity version as used in the present study.  

Unavailable dimensions were scaled off the drawing as best as possible.  Additionally, 

certain details of the SA-2 missile’s construction were not visible in the drawing and for 

such situations; the fidelity level is less in the calculations.  The differences with the 

prototype included airfoil cross-sections and the presence of a boat-tail on the second 

stage housed within the first stage.  Updated geometry drawings were subsequently 

provided by MSIC for this particular study that included protuberances and the 

aforementioned boat-tail.  Reasonable guesses were made for the airfoil cross-sections. 

It is unclear whether boundary layer trips were used on the model to fix the 

transition onset point to better match the flow characteristics of the full-scale missile.  

Early results generated in the study lead to the surmise that boundary layer trips were 

used during testing.  Thus, in Missile DATCOM calculations, the boundary layer is 

assumed to be fully turbulent. 
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C. RESEARCH APPROACH 

Parametric studies of the missile performance were conducted using Missile 

DATCOM to produce data for comparison with the range of flow conditions included in 

the MSIC data.   A large amount of data for many different flight conditions have been 

computed.  Most of the Missile DATCOM output was produced for specific values of 

Mach number, angle of attack, control surface deflection, and flight altitude for which the 

MSIC data were provided.  If anomalies were noticed, other flight parameters were used 

to investigate the workings of Missile DATCOM. 

CFD analysis is also included in this study to see how the results from these types 

of simulations can compare.  Complete agreement between these computational tools 

may not be possible, but seeing some similarities may give good insight into the ability to 

use both Missile DATCOM and CFD as powerful design tools. 

D. TEST CONDITIONS 

The test conditions were chosen to correspond with the data provided by the 

sponsor.  All of the cases were shown in this study were calculated with forced turbulent 

flow.  Natural transition was briefly investigated, but it was found to have little effect on 

the output values since laminar flow accounts for a very small portion of the flow regime 

at the high Reynolds numbers studied.  Table 3 lists the nominal conditions used. 

 

Mach Numbers 0.8, 1.2, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 

Angles of Attack 0º–24º (in 2º increments) 

Altitudes 0 m, 5000 m, 10000 m, 20000 m, 30000 m 

Surface Roughness 0 cm, 0.001016 cm, 0.003048 cm 

Table 3.   Test conditions 
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III. PRESENTATION OF RESULTS 

A. MOTIVATION FOR FURTHER STUDY FROM THE RESULTS OF 
PREVIOUS WORK 

The initial motivation for the study came from a need to extend the previous 

studies to other flight conditions involving fin deflections and for different altitudes. It 

was also felt that the differences between the computations and experiments at transonic 

flow conditions warranted additional study.  Figure 10 compares the experimental data 

with results from using the first geometry supplied by MSIC with Missile DATCOM 

7/07 and the updated geometry with Missile DATCOM 8/08. 

0.5 1 1.5 2 2.5 3 3.5 4 4.5
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C
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Experimental

New Geometry DATCOM 08
Old Geometry DATCOM 07

 

Figure 10.   Comparison of CA for calculations performed using the old geometry with 
DATCOM 7/07 and those using the new geometry with DATCOM 8/08 

The improvement obtained from using the latter in the degree of agreement 

between computations and experiment is striking.  Thus, a repeat study of the missile 

with the newer code was undertaken for flight conditions that included fin deflections.  

B. MISSILE DATCOM 7/07 AND MISSILE DATCOM 8/08 

Chapter I, Section E, mentioned recent changes to Missile DATCOM.  One 

particular change is to the method in which the pressure component of the axial force is 
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computed.  The following discussion shows that, indeed, there has been a major change 

from 7/07 to 8/08 and it confirms considerable improvements in accuracy that were 

obtained in the range from Mcrit to M = 1.2.  Figure 11 shows the mismatch that exists 

between the 7/07 and 8/08 versions in this range. 
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Panel D 
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Figure 11.   CA vs. Angle of Attack for Missile DATCOM 7/07 and Missile DATCOM 
8/08 for M = 0.8, 0.95, 1.05, and 1.2 

It is easy to see in three of the four panels of Figure 11 that Missile DATCOM 

7/07 overestimates CA compared to Missile DATCOM 8/08.  However, something 

interesting happens in panel A at M = 0.8.  This is near the critical Mach number.  The 

graphs cross at approximately 20° and the value of CA at 24° becomes negative, which 

implies a thrust and not drag. Whereas it is unclear why a negative CA value was 

computed, the non-negative CA value of 8/08 code is clearly more acceptable. The 
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negative value that is seen at 24º is an anomaly that is obviously not present anywhere in 

the full range of experimental values provided by MSIC. 

In Figure 11, we can see the definite difference between the two versions of 

Missile DATCOM.  The better test of how the new improvements have affected the 

output is to compare each to the MSIC data.  Figure 12 shows the comparison at M = 0.8 

and M = 1.2.  Notice that Missile DATCOM 7/07 considerably overestimates CA (in 

panel A, less than 20°) whereas the agreement for Missile DATCOM 8/08 is quite good. 

Thus, it was decided to make all comparisons with the latest version of Missile 

DATCOM. 

Panel A 

0 5 10 15 20 25
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
A
 vs. Angle of Attack for M


 = 0.8

Angle of Attack (deg)

C
A

 

 

Experimental

DATCOM 07
DATCOM 08

 

Panel B 

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
A
 vs. Angle of Attack for M


 = 1.2

Angle of Attack (deg)

C
A

 

 

Experimental

DATCOM 07
DATCOM 08

 

Figure 12.   CA vs Angle of Attack for MSIC Data, Missile DATCOM 7/07, and Missile 
DATCOM 8/08 for M = 0.8 and 1.2 

Figure 13 highlights the variation of CA and the differences between Missile 

DATCOM 7/07 and Missile DATCOM 8/08 as a function of Mach number at 0º and 20º 

angle of attack.  Again, the disparity between these two versions is easily quantifiable.  

The changes made to Missile DATCOM between the 7/07 and 8/08 versions for this 

range of Mach numbers was certainly a significant improvement.  MSIC data is shown 

for M = 0.8 and 1.2 as a reference.  No MSIC data exists between the points shown in 

Figure 13.  Therefore, the line shown between the points is dotted to indicate only a 

possible fit.  The better fit in this region can be attributed to recent improvements in the 

transonic computations performed by Missile DATCOM. 
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Figure 13.   CA vs Mach Number for Missile DATCOM 7/07 and Missile DATCOM 8/08 
for Angle of Attack 0° and 20° including MSIC data at M = 0.8 and 1.2 for 

comparison 

C. AXIAL FORCE COEFFICIENT 

1. Axial Force Coefficient as a Function of Angle of Attack 

Parametric studies were conducted using Missile DATCOM for M = 0.8 to M = 

4.5 and 0º angle of attack to 24º at the same intervals as the data provided by MSIC.  

Figures 14–22 give a survey of the results of these studies and percentage differences 

found between the computed Missile DATCOM output and the data provided by MSIC.  

These particular cases were run forcing turbulent flow with a surface roughness of 

0.001016 cm, which was found by Teo (2008) to give good results. 
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Figure 14.   CA vs. Angle of Attack for MSIC Data and Missile DATCOM 8/08 for M = 
0.8 

Figure 14 shows approximately 5% difference between the MSIC data and 

Missile DATCOM 8/08 over a large range of angle of attacks, which was deemed 

excellent.  However, after an angle of attack of 20º the agreement breaks off and the 

results diverge considerably.  It is not entirely clear why this discrepancy appears other 

than that this is a high angle of attack case.  One possible explanation is likely the 

well known differences in the formation and evolution of the forebody vortices at these 

high angles of attack on an axisymmetric slender body. 

Since the SA-2 missile traverses through this Mach number for less than 10 

seconds, additional attention was not devoted to this discrepancy.  Most of the flight 

envelope encompasses the supersonic regime that extends up to about Mach 3.  Thus, 

studies at lower Mach numbers are not of interest for this missile.  However, it does show 

that for low to moderate angles of attack at this particular Mach number Missile 

DATCOM 8/08 is able to provide excellent results that would be adequate for 

preliminary design studies. 

Figure 15 shows the best agreement, over the widest range of angle of attacks, 

from among Figures 14–18 of this section and Figures 32–35 of Appendix C.  The 

maximum difference occurs at 20º and shows only a 2% difference.  This level of 
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agreement, for this particular Mach number, indicates that in this region, Missile 

DATCOM provides predictions that accurately model the physics. 
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Figure 15.   CA vs. Angle of Attack for MSIC Data and Missile DATCOM 8/08 for M = 
1.2 

Figures 16–18 show a noticeable difference in the general trend between the 

MSIC data and DATCOM output as the angle of attack is increased.  Although 

apparently opposing trends are observed, it should be noted that in Figure 18 an 

agreement of better than 10% exists for most of its range and Figures 16 and 17 show an 

agreement better than 10% for angles of attack of 17° or less. 
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Figure 16.   CA vs. Angle of Attack for MSIC Data and Missile DATCOM 8/08 for M = 
1.6 
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Figure 17.   CA vs. Angle of Attack for MSIC Data and Missile DATCOM 8/08 for M = 
2.0 

In general, this level of agreement is considered satisfactory in missile 

compuatations using empirical codes so, it is accepted.  The code used is known to 

produce results of less than 10% difference if the predictive region of interest is limited to 

an angle of attack of approximately 20°. 
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Figure 18.   CA vs. Angle of Attack for MSIC Data and Missile DATCOM 8/08 for M = 
2.5 
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Differences seen in the plots presented beyond 20º can naturally be expected to be 

larger because of this artificial restriction in the predictive range of Missile DATCOM. 

This indicates that the code is most suitable if the flight envelope consists of normal 

course and altitude corrections, which limits the ability to accurately predict the 

aerodynamic forces in any radical maneuver. 

For Mach number > 3.0, the trend in both the MSIC data and DATCOM output 

are both monotonically increasing and concave upward.  This is shown in Figures 32–35 

of Appendix C.  A likely explanation for the change in the trend and the 

overpredictive/underpredictive nature that is seen from the output of DATCOM from this 

point onward is a change in the computational method used around Mach 3.0.  

Additionally, we can say that for Mach numbers above 3.0 the accuracy meets the goal of 

less than 10% at angles of attack greater than approximately 10º.  Overall, the average 

difference for CA is approximately 7%. 

2. Axial Force Coefficient as a Function of Mach Number 

Although the data presented here are identical to what was presented in Chapter 

III, Section C.1, an alternate view—in this case as a function of Mach number for a 

representative sample of angles of attack—reinforces the conclusions made in the 

previous section. 
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Figure 19.   CA vs. Mach Number for MSIC Data and Missile DATCOM for Angle of 
Attack = 0º 
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In Figures 19 and 20, the desired accuracy goal is met for approximately Mach 

3.0 and below.  Figure 21, however, shows the opposite behavior.  For large angles of 

attack, the relationship is reversed.  The higher the Mach number, the better the accuracy 

becomes. 

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

C
A
 vs. Mach Number for Angle of Attack = 10

Mach Number

C
A

 

 

Experimental

DATCOM 08

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

8

10

12

14

Percent Difference between DATCOM 08 C
A
 & MSIC Data C

A

vs. Mach Number at   = 10

Mach Number

P
e

rc
en

t 
D

if
fe

re
n

ce

Figure 20.   CA vs. Mach Number for MSIC Data and Missile DATCOM for Angle of 
Attack = 10º 

The same conclusion can be reached when analyzing this data as a function of 

angle of attack.  A general framework then arises that places a lower and upper bound on 

the prediction domain to maintain the desired accuracy.  For Mach numbers less than 

approximately 3.0, it can be expected that an accuracy of ±10% is possible for angles of 

attack less than approximately 18º (see Chapter III, Section C.1).  Conversely, for Mach 

numbers greater than this value, the accuracy of ±10% can be expected for angles of 

attack higher than approximately 18º. 
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Figure 21.   CA vs. Mach Number for MSIC Data and Missile DATCOM for Angle of 
Attack = 20º 

D. SKIN FRICTION 

As stated earlier, all Missile DATCOM calculations for this parametric study of 

the coefficient of skin friction are run as purely turbulent cases.  While agreement in CA 

falls within the tolerance goal, it may be entirely possible that the individual components 

(Cf, CA0, etc.) will not match those derived from experiments.  This is because of the 

issues involved in measuring skin friction over the model at the various Mach numbers of 

interest. If success can be achieved, then use of Missile DATCOM to calculate all the 

components would enable it to be a more powerful tool.  Figure 22 shows the comparison 

between the MSIC data and Missile DATCOM 8/08 Cf calculations.  The code has 

overpredicted the Cf values.  The roughness value for the MSIC data is not known.  Even 

though turbulent, the surface was treated as aerodynamically smooth (roughness = 0 cm) 

for the Missile DATCOM calculations.  Consequently, one conclusion can be drawn. 

With the limited details of the missile and data in hand, one cannot perform better 

calculations to get a good agreement because the roughness cannot be reduced any 

further in Missile DATCOM. 
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Figure 22.   Cf vs. Mach Number for MSIC data and Missile DATCOM 8/08 at Sea Level 

The output for Cf at altitudes other than sea level is available in Figure 36 of 

Appendix C.  The overall trends are identical to Figure 22.  Although the agreement for 

Cf is not the desired objective, the Missile DATCOM output can still be used to get a 

general idea of the magnitude and the behavior of the skin friction coefficient as a 

function of Mach number.  Being able to predict Cf trends is by itself valuable at these 

high angles of attack, altitudes and speeds, since the flow Reynolds number changes over 

a significant range.  Data for the skin friction coefficient were only given at zero angle of 

attack.  No discussion of the changes of skin friction with angle of attack will be made. 

E. CONTROL SURFACE DEFLECTIONS 

In a supersonic missile, the control surfaces are small compared to the overall size 

of the missile.  However, it can be expected that small deflections can produce large 

changes in the missile orientation because of the comparatively large forces produced as 

a result of the high speed of the body.  Hence, the present study used fin deflection angles 

up to 10º.  Figures 23–26 show the result of the parametric study conducted for the SA-2 

missile geometry using Missile DATCOM and its comparison with the MSIC data for 

Mach numbers 1.2, 2.0, 2.5, and 3.0.  Each of these Mach numbers is presented with 

control surface deflections of 5º and 10º. 
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Figure 23.   CA vs. Angle of Attack at M = 1.2 for control surface deflections of 5º and 10º 

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
A
 vs. Angle of Attack for M


 = 2.0

Control Surface Deflection = 5

Angle of Attack (deg)

C
A

 

 

Experimental

DATCOM 08

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
A
 vs. Angle of Attack for M


 = 2.0

Control Surface Deflection = 10

Angle of Attack (deg)

C
A

 

 

Experimental

DATCOM 08

Figure 24.   CA vs. Angle of Attack at M = 2.0 for control surface deflections of 5º and 10º 

Figure 37 of Appendix C shows the results for the Mach numbers 0.8, 1.6, 3.5, 

4.0, and 4.5 for the same control surface deflections presented in Figures 23–26.  

Although small differences are seen, Missile DATCOM produces values that have 

relatively good correlation with the MSIC dataset for the smaller deflection angle of 5º.  

The difference, as can be expected, increases for 10º but is still in an acceptable range.  

For preliminary designs, these calculations would give rough estimates for the 

contribution of these fins during maneuvers and the extra thrust required to counteract 

their effect. 
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Figure 25.   CA vs. Angle of Attack at M = 2.5 for control surface deflections of 5º and 10º 
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Figure 26.   CA vs. Angle of Attack at M = 3.0 for control surface deflections of 5º and 10º 

Table 4 gives a tabulation of the average percent difference for the entire body of 

test conditions utilized.  For all given Mach numbers on average, as control surface 

deflection angle is increased by 5º the difference increases to approximately 1.5 times the 

previous level. 

Control Surface 
Deflection Angle (deg)

Average Percent
Difference (%) 

5 8.99 
10 13.42 
15 20.09 
20 48.93 
25 77.66 
30 53.90 

Table 4.     Average percent difference in CA for control surface deflection angles 5º–30º 
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The differences documented here lead to the inference that when using Missile 

DATCOM for parametric studies, involving control surface deflections, the maximum 

deflection should be limited to approximately 10º.  This will ensure that a large error is 

not realized with an untested design.  For the case of a supersonic missile, this certainly 

would be adequate information for a first approximation to size the engine. 

No parametric studies were conducted for purely subsonic conditions, so a 

projection for the level of agreement that might be present if studies were performed on 

subsonic missiles (e.g., cruise missiles) is not possible. 

F. NORMAL FORCE COEFFICIENTS 

Sections C and E present the data and show the level of agreement that exists in 

the axial force coefficient between the MSIC data and the output of Missile DATCOM 

8/08 over a wide range of Mach numbers, angles of attack, and a limited range of control 

surface deflections.  Numbers greater than the targeted average of 10% absolute 

difference are noticed in the axial force coefficient.  It is of interest to determine the level 

of comparisons with the normal force coefficient.  
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Figure 27.   CN vs. Angle of Attack for M = 0.8 and 1.2 

Figures 27–29 compare the MSIC data and the Missile DATCOM output for 

Mach numbers 0.8, 1.2, 2.0, 2.5, and 3.0.  These flight conditions were chosen as 

representative values of the flight envelope for the SA-2 missile.  Additional flight 

conditions are available as Figure 38 in Appendix C.  It is evident that as the Mach 
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number is increased, the difference reduces.  At Mach 4.5 (Figure 38 of Appendix C) the 

average difference approaches approximately 12%.  The average difference in the typical 

flight envelope of Mach 1.2 to Mach 3.0 ranges from approximately 31% to 

approximately 16%.  While this difference is beyond the less than 10% difference target, 

it shows a consistent decline in over the Mach number range for the full range of angles 

of attack.  This knowledge may serve as a basis to correct the predicted aerodynamic 

coefficients of an unknown configuration of similar missile geometry in the typical flight 

envelope. 
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Figure 28.   CN vs. Angle of Attack for M = 2.0 and 2.5 
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Figure 29.   CN vs. Angle of Attack for M = 3.0 

In Figures 27–29, the predicted to experimental level agreement decreases as the 

angle of attack is increased.  Missile DATCOM consistently over predicts the normal 

force coefficient.  This over prediction in the computations can likely be contributed to 
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the inability to accurately model the flow physics, which is naturally extremely 

complicated.  The asymmetric nature of the vortical flow structures that are attached to 

the body and are also shed from the body create unsteadiness in the flow that cannot be 

modeled.  While the formation of these vortices on the body and fins increase the 

theoretical lift, the asymmetric nature of their formation acts to reduce the amount of 

additional lift that can be produced.  This is shown as a lower sloped distribution for the 

MSIC data than that predicted by Missile DATCOM.  However, this inability to 

accurately model the physics of the flow can be corrected by the error correction 

proposed as Eq. (15) between Mach 1.2 and 3.0. 

  (15) 
4 3 20.016255 0.10744 0.23219 0.096145 0.62297

act calc
N NC ErrCorr C

ErrCorr M M M M

 

    

The error correction is a fourth-order curve fit to the average percent differences 

at distinct points between Mach 1.2 and 3.0.  Figure 30 shows the effect of adding the 

correction for the angles of attack of 2º, 10º, and 20º for the range of Mach numbers in 

question.  For angles of attack less than 6º the correction does not produce results that 

meet the goal of less than ±10% difference.  However, from 6º on, the error correction 

produces corrected Missile DATCOM values that have less than 9% difference.  Because 

this error correction is derived from only one missile configuration, it can only be used 

for the SA-2 or similarly configured geometries.  Further study of other configurations is 

necessary to produce a more general correction. 
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Figure 30.   CN vs. Mach Number for Angles of Attack of 2º, 6°, 10º, and 20º with a 4th 
order correction 

G. CFD COMPARISONS 
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ANSYS CFX was chosen as the compressible solver for completing the CFD 

analysis for the SA-2 Missile.  Parametric studies from Mach 0.2 to Mach 2.5 were 

conducted.  This range of Mach numbers far exceeds the normal flight envelope into the 

low subsonic region.  However, these subsonic solutions were used to seed the supersonic 

solutions.  The upper Mach number for the range studied is near the top of the operational 

envelope but does not reach the approximate ceiling (M = 3.0).  Solutions above this 

 

 



Mach number were attempted but resulted in unstable simulations, and thus, the 

computations are limited to the lower Mach number values.  The standard k-ε turbulence 

model was employed in these calculations. 

Figure 30 shows the comparison of the axial force coefficients for an angle of 

attack of 0º from the three sources:  MSIC, Missile DATCOM, and CFD.  The excellent 

agreement between the Missile DATCOM data and the MSIC data has been discussed 

previously.  The CFD data, however, does not show the same promising agreement.  The 

CFD data shown was calculated for an aerodynamically smooth body.  In addition to the 

0.001016 cm roughness, output from Missile DATCOM is shown for an aerodynamically 

smooth body. 
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Figure 31.   CA vs. Mach Number for MSIC data, DATCOM 08, and CFD 

As can be seen, the differences between the results from CFD and Missile 

DATCOM vary from approximately a difference (with respect to DATCOM 08 smooth) 

of 108% at M = 0.8 to 13% at Mach 2.5.  The curves have similar shapes, which is 

promising despite the large difference.  The “transonic drag rise” is present as well.  

Thus, we can say that the physics being modeled for each of the computational tools are 

similar.  More study is required to determine whether a CFD simulation can accurately 

predict the aerodynamic forces on this missile geometry. 
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IV. CONCLUDING REMARKS 

The following major conclusions can be drawn from this research study. 

 A distinctly superior level of agreement was obtained in regards to the axial 

force coefficient using Missile DATCOM 08, when compared to its 

predecessor version DATCOM 07. This was made possible by the more 

detailed geometry that was provided  and the  predictive ability of Missile 

DATCOM 8/08 in the transonic and supersonic speed regions. 

 Based on a critical comparison between experimental/extrapolated data and 

Missile DATCOM 8/08, it can be said with relative certainty that Missile axial 

force predictions can be accomplished with a confidence level of ±10% from 

the upper transonic to the beginning of the hypersonic speed regions. 

 Employing the error correction scheme proposed in Chapter III Section G for 

the normal force coefficient produces Missile DATCOM output that has a 

confidence level of ±10% in the range of Mach 1.2 to 3.0 for angles of attack 

greater than 6º. 

 Axial force component level agreements require much finer modeling than is 

presently available in the semi-empirical models. A far more involved CFD 

effort may be of some value here. 
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V. FUTURE WORK 

The continuing development of aerodynamic prediction codes such as Missile 

DATCOM will drive increased accuracy and promote the increased utility of this 

aerodynamic prediction tool.  As accuracy increases, less time will have to be spent using 

more expensive (e.g., more time, higher cost) computational tools and performing 

expensive experiments.  The necessity to use these more expensive tools will not be 

eliminated altogether, however.  Essentially, the key to maximizing the benefit for all the 

more expensive computational tools available is to use programs such as Missile 

DATCOM, which produce fairly accurate results, to steer analyses that must be 

performed using these tools. 

The goal of this project was to produce an in-house capability to quickly analyze 

missile designs from this academic institution and the defense industry (through 

collaborative efforts).  The base is now set for using Missile DATCOM as a regular 

computational tool, whether it be for instructional use, intelligence analyses, or full-scale 

design. 
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APPENDIX A 

Appendix A presents the summary derivation of concepts that may be important, 

but do not necessarily need to remain in the body of this work. 

A. VAN DYKE HYBRID THEORY 

Van Dyke (1952) postulated that higher-order solutions to the full potential 

equation could be beneficial if viscous effects were indeed small (Mendenhall & 

Hemsch, 1992).  This theory combines a second-order axial flow solution to the potential 

equation with a first-order cross flow solution (Moore, 2000).  Because perturbations in 

the flow from the body have more effect in the axial direction, a second-order solution is 

required to get the desired accuracy particularly for drag calculations.  However, 

perturbations in the cross flow are less sensitive to the body’s presence so a first-order 

approximation provides the necessary accuracy.  The cross flow calculations produce the 

normal and center of pressure distributions.  For the body, the nose shape plays a major 

role in the size of the perturbations produced.  If the nose is slender and long, the 

perturbations will be small and a first-order solution may be employed.  However, in 

reality, this configuration is rarely seen in practice.  So in order to achieve the goal of 

±10% accuracy a second-order solution must be employed (Moore, 2000). 

The following series of equations lay out the general way that VDHT is used to 

calculate the flow conditions for the supersonic flow field.  This summary of the VDHT 

method is a synthesis of explanations of the method provided by Jenn (Mendenhall & 

Hemsch, 1992, pp. 44–50) and Moore (2000, pp. 52-57).  To begin the second order 

solution of the full potential equation, all the third order terms are eliminated.  However, 

Van Dyke proposed not eliminating all third order terms, but instead, retaining those that 

involve only derivatives normal to the freestream.  Thus, the perturbation form of the full 

potential equation becomes 
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2 2 2
2 2 2

2 2
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2 1 2

1 1 2 2
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x xx r xr
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r r r r

r r
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 
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 
                  
 
        

 (16) 

where 21 M   .  If all the terms that are second-order or greater are neglected in Eq. 

(16) we can see that it reduces to the first-order perturbation equation. 

 2
2

1 1
0rr r xxr r           (17) 

The two boundary conditions required are as follows:  

(a) No disturbances are allowed up stream.  This is shown by 

    0, , 0, , 0r xr r      (18) 

(b) Flow tangency at the surface of the body given by 

   d
, , sin cos cos , ,

dr b x b

r
x r x r 

x
           (19) 

The following is proposed as the solution 

    1 1, , ( , ) cos , sin cosx r x r x r       



 (20) 

The first term in Eq. (20) is the first-order axial solution.  The second term is the first-

order cross flow solution.  Van Dyke’s theory uses a second order method in the axial 

direction, but because we need to seed the second-order solution with the first-order 

solution, we begin with the first-order solution.  Additionally, because Eq. (20) is linear, 

each of these solutions can be found separately and then added together (i.e., principle of 

superposition).   ,x r is a distribution of sources and sinks along the centerline of the 

body that satisfies the boundary conditions at all points.   ,x r is a distribution of 

doublets along the centerline that satisfies the same boundary conditions as the source 

distribution. 
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We now work with each proposed solution separately.  First, we tackle the axial 

flow solution.  Differentiating as necessary and substituting  ,x r into Eq. (17), we 

arrive at 

 2
1 1 1

1
0rr r xxr

       (21) 

Substituting for the boundary conditions, we have 

 
   

   
1 1

1 1

0, 0, 0

, 1 ,

r x

r b b x b

r r

x r r x r

 

 

 

   
 (22) 

Second, we tackle the first-order cross flow solution.  Differentiating as necessary and 

substituting  , x r into Eq. (17), we arrive at 

 2
1 1 1 12

1 1
0rr r xxr r

         (23) 

Substituting for the boundary conditions, we have 

 
   
   

1 1

1 1
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1 , ,

r x

r b b x b

r r

x r r x r

 
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 (24) 

The general solution for Eq. (21) follows as 

    
 

1 2 2 2
0

d
,

x r f
x r

x r

  

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  (25) 

The general solution for Eq. (23) follows as 

      
 

1 2 2 2
0

d1
,

x r x g
x r

r x r

   


  

 


 
  (26) 

 f   and  g  , the source distribution and doublet distribution, respectively, could be 

linear if only the first-order solution were required.  However, they must be of higher 

order for the second-order solution to be non- trivial. 

The next step in the process is the key to the hybrid theory.  The first-order 

solution is used to seed the second-order solution.  This is done by creating a second-

order axial perturbation equation with the second-order solution on the left and the first-
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order axial solution previously determined on the right.  We then have the second-order 

accurate solution in terms of the first-order. 
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 (27) 

The boundary conditions are exactly of the form of Eq. (22), but involve the second order 

solution.  Van Dyke then found a particular solution to Eq. (27).  It is given by 

     2
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1 1 1 122

1 1

2 4
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 (28) 

The formulation of Eq. (28) is the real breakthrough in this theory because the second-

order particular solution is given algebraically in terms of the first-order solution.  This 

makes finding the velocity components very simple and involves only differentiating Eq. 

(28).  Now the velocity components are only in terms of the first-order solution. 

The full solution to Eq. (27) involves adding a complementary solution and using 

a boundary condition with both the particular and complementary solutions.  We finally 

use the second-order accurate axial solution and the first-order accurate cross flow 

solution to formulate the perturbation velocities given by 
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 (29) 

Using the perturbation velocities, we can then find the pressure distribution on the body.  

It is given by 
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 (30) 

The drag force coefficient (normal and moment not discussed) is then given by 
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
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Therefore, we only need use quadratic order source and sink distributions to define the 

axial and cross flow distributions, perform the integrations numerically, and we get the 

pressure distribution and the force coefficients from it. 

The limitations of the theory are:  1) The range of operation of this theory is from 

approximately a Mach number of 1.2 to from 2.0 to 3.0, depending on the body 

configuration; 2) The lower limit corresponds with the condition where weak shocks are 

present, and the flow field is supersonic with the exception of the boundary layer and 

areas where the flow may be separated; 3) The upper limit of this theory is governed by 

the location of the Mach cone with respect to the surface.  Thus, it may be used except 

when Mach cone lies on the surface.  The angle of the Mach cone varies with nose angle. 

B. TRANSONIC AREA RULE AND VON KÁRMÁN SIMILARITY 

The transonic area rule comprises the idea that two bodies with identical cross-

sectional areas produce the same wave drag at a particular Mach number.  The von 

Kármán “similarity laws state that, for two-dimensional flow, the flow patterns over two 

similar, non-lifting airfoils must be the same if the parameter  1/3 2/ 1t c M  has the 

same value for each airfoil” (Mendenhall & Hemsch, 1992, p. 23).  Thus, this can be used 

to determine unknown values with a range of experimentally determined values. 
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APPENDIX B 

Tables 5–7 list the axial force coefficient prediction methods employed in Missile 

DATCOM 8/08 for the body alone, fin alone, and body-fin synthesis. 

 

Parameter Subsonic/Transonic (M<1.2) Supersonic (M>1.2) 

CA-skin 
fricition 

Turb:  Van Driest II, MDAC West Handbook 
Lam:  Blasius, Hoerner Fluid Dynamics Drag 
Roughness:  USAF Datcom section 4.1.5.1 

Turb:  Van Driest II, MDAC West Handbook 
Lam:  Blasius, Hoerner Fluid Dynamics Drag 
Roughness:  USAF Datcom section 4.1.5.1 

CA-pressure/ 
wave 

M<Mcrit:  USAF Datcom section 4.2.3.1 
M>Mcrit:  Cubic Polynomial Curve Fit to M=1.2 

SOSET, NSWC-TR-81-156 
VDHT, NSWC-TR-81-156 
Modified Newtonian Theory, NASA-TND-176 

CA-base 
Cylinder:  NSWC Charts, NSWC-TR-92/509 
Boattail:  NASA Method, NASA-TR-R-100 
Flare:  NSWC Charts, NSWC-TR-81-358 

Cylinder:  NSWC Charts, NSWC-TR-92/509 
Boattail:  NASA Method, NASA-TR-R-100 
Flare:  NSWC Charts, NSWC-TR-81-156 

CA-
protuberance 

M<0.6:  Hoerner Fluid Dynamic Drag 
M>0.6:  Cubic curve Fit, AIAA-1994-0027 

M<5.0, Modified Newtonian Theory, AIAA-1994-
0027 
M>5.0, Modified Newtonian Theory 

CA-α 
Allen and Perkins Crossflow, NASA TR-1048 
AIAA-2009-0907 

SOSET, NSWC-TR-81-156 
Assumed zero for VDHT and Modified Newtonian 
Theory AIAA 2005-4833 

Table 5.   Body Alone Aerodynamic Methodology for Axial Force Coefficient (After 
Auman, Doyle, Rosema, Underwood, & Blake, 2008, p. 98) 

Parameter Subsonic (M<0.8) Transonic (0.8<M<1.4) Supersonic (M>1.4) 

CA-skin 
fricition 

MDAC West Handbook 
Hoerner Fluid Dynamic Drag 
USAF Datcom 4.1.5.1 

MDAC West Handbook 
Hoerner Fluid Dynamic Drag 
USAF Datcom 4.1.5.1 

MDAC West Handbook 
Hoerner Fluid Dynamic Drag 
USAF Datcom 4.1.5.1 

CA-pressure Hoerner Fluid Dynamic Drag Hoerner Fluid Dynamic Drag Not Applicable 

CA-wave Not Applicable 
M<1.05:  zero 
1.05<M<1.4:  linear fit 

Potential Flow Theory, NWL-
TR-3018 

CA-bluntness USAF Datcom 4.1.5.1 USAF Datcom 4.1.5.1 
Potential Flow Theory, NWL-
TR-3018 

CA-base Empirical, NWL-TR-2796 Empirical, NWL-TR-2796 Empirical, NWL-TR-2796 

CA-induced USAF Datcom 4.1.5.2 USAF Datcom 4.1.5.2 Zero 

Table 6.   Fin Alone Aerodynamic Methodology for Axial Force Coefficient (After Auman, 
Doyle, Rosema, Underwood, & Blake, 2008, p. 100) 
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Parameter Subsonic (M<1.0) Supersonic (M>1.0) 

Body-Fin Upwash, Kw 
Empirical correlation, AIAA 96-3395 
Folding fin:  AIAA 94-0027 

Empirical correlation, AIAA 96-3395 
Folding fin:  AIAA 94-0027 

Fin-Body Carryover, KB Slender Body Theory, NACA-TR-1307 
Slender Body Theory, NACA-TR-1307 
AIAA Journal, May 1981 
AIAA-2007-3937 

Body-Fin Upwash 
Center of Pressure, xcpWB 

Λ>0:  USAF Datcom section 4.1.4.2 
Λ<0:  AFWAL-TR-84-3084 

Λ>0:  USAF Datcom section 4.1.4.2 
Λ<0:  AFWAL-TR-84-3084 

Body-Fin-Body Carryover 
Center of Pressure, xcpbW 

Lifting Line Theory, NACA-TR-1307 
AIAA 94-0027 

Slender Body Theory, NACA-TR-1307 
AIAA Journal, August 1982 

Fin Deflection, Λij Slender Body Theory, AGARD-R-711 Slender Body Theory, AGARD-R-711 

Equivalent Angle of Attack AIAA Journal S&R, July-Aug 1983 AIAA Journal S&R, July-Aug 1983 

Body Vortex Strength Empirical, NWC-TP-5761 Empirical, NWC-TP-5761 

Body Vortex Track Empirical, NWC-TP-5761 Empirical, NWC-TP-5761 

Fin Vortex Strength Line Vortex Theory, NACA-TR-1307 Line Vortex Theory, NACA-TR-1307 

Fin Vortex Track Along Velocity Vector Along Velocity Vector 

Dynamic derivatives Equivalent Angle of Attack, AIAA 97-2280 Equivalent Angle of Attack, AIAA 97-2280 

Table 7.   Body-Fin Synthesis Aerodynamic Methodology for Axial Force Coefficient 
(After Auman, Doyle, Rosema, Underwood, & Blake, 2008, p. 102) 



APPENDIX C 

Appendix C presents test cases not presented directly in the body, but those the 

reader may still find as useful information for the output fidelity of Missile DATCOM 

8/08. 
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Figure 32.   CA vs. Angle of Attack for MSIC Data and Missile DATCOM 8/08 for M = 
3.0 (Panels A and B) 
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Figure 33.   CA vs. Angle of Attack for MSIC Data and Missile DATCOM 8/08 for M = 
3.5 (Panels A and B) 
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Figure 34.   CA vs. Angle of Attack for MSIC Data and Missile DATCOM 8/08 for M = 
4.0 (Panels A and B) 
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Figure 35.   CA vs. Angle of Attack for MSIC Data and Missile DATCOM 8/08 for M = 
4.5 (Panels A and B) 
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Figure 36.   Cf vs. Mach number for MSIC and Missile DATCOM 8/08 at altitudes of 
5000 m, 10000 m, 20000 m, and 30000 m (Panels A – D) 
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Figure 37.   CA vs. Angle of Attack at M = 0.8, 1.6, 3.5, 4.0, and 4.5 for control surface 
deflections of 5º and 10º (Panels A – J) 
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Figure 38.   CN vs Angle of Attack for M = 1.6, 3.5, 4.0, and 4.5 (Panels A-D) 
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